10 resultados para Emerging organic pollutants

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistent environmental pollutants, including heavy metals and persistent organic pollutants (POPs), have a ubiquitous presence. Many of these pollutants affect neurobiological processes, either accidentally or by design. The aim of this study was to explore the associations between assayed measures of POPs and heavy metals and depressive symptoms. We hypothesised that higher levels of pollutants and metals would be associated with depressive symptoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the role of a permanently manned Australian Antarctic research station (Casey Station) as a source of contemporary persistent organic pollutants (POPs) to the local environment. Polybrominated diphenyl ethers (PBDEs) and poly- and perfluoroalkylated substances (PFASs) were found in indoor dust and treated wastewater effluent of the station. PBDE (e.g., BDE-209 26-820 ng g(-1) dry weight (dw)) and PFAS levels (e.g., PFOS 3.8-2400 ng g(-1) (dw)) in dust were consistent with those previously reported in homes and offices from Australia, reflecting consumer products and materials of the host nation. The levels of PBDEs and PFASs in wastewater (e.g., BDE-209 71-400 ng L(-1)) were in the upper range of concentrations reported for secondary treatment plants in other parts of the world. The chemical profiles of some PFAS samples were, however, different from domestic profiles. Dispersal of chemicals into the immediate marine and terrestrial environments was investigated by analysis of abiotic and biotic matrices. Analytes showed decreasing concentrations with increasing distance from the station. This study provides the first evidence of PFAS input to Polar regions via local research stations and demonstrates the introduction of POPs recently listed under the Stockholm Convention into the Antarctic environment through local human activities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel recyclable and flexible membrane was prepared for the removal of oil spills and organic dye pollutants, by functionalizing polyester textiles with reduced graphene oxide@ZnO nanocomposites using a layer-by-layer technique. The membrane showed efficient water/oil separation, and the amount of oil adsorbed by the membrane could be up to 23 times its own weight. The adsorption capacity was largely retained during many adsorption recycling cycles. The membrane also displayed highly efficient removal of a dye pollutant from water under simulated sunlight. The membrane maintained a near-original removal efficiency after five cycles of dye removal. This new type of membrane may find practical applications in the large-scale separation of organic pollutants from water, particularly in the field of oil spills clean-up and dye removal from industrial effluent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The joint symposium of The Omega-3 Centre and the Australasian Section American Oil Chemists Society; Recent Advances in Omega-3: Health Benefits, Sources, Products and Bioavailability, was held November 7, 2013 in Newcastle, NSW, Australia. Over 115 attendees received new information on a range of health benefits, aquaculture as a sustainable source of supply, and current and potential new and novel sources of these essential omega-3 long-chain (LC, ≥ C20) polyunsaturated fatty acid nutrients (also termed LC omega-3). The theme of "Food versus Fuel" was an inspired way to present a vast array of emerging and ground breaking Omega-3 research that has application across many disciplines. Eleven papers submitted following from the Omega-3 Symposium are published in this Special Issue volume, with topics covered including: an update on the use of the Omega-3 Index (O3I), the effects of dosage and concurrent intake of vitamins/minerals on omega-3 incorporation into red blood cells, the possible use of the O3I as a measure of risk for adiposity, the need for and progress with new land plant sources of docosahexaenoic acid (DHA, 22:6ω3), the current status of farmed Australian and New Zealand fish, and also supplements, in terms of their LC omega-3 and persistent organic pollutants (POP) content, progress with cheap carbon sources in the culture of DHA-producing single cell organisms, a detailed examination of the lipids of the New Zealand Greenshell mussel, and a pilot investigation of the purification of New Zealand hoki liver oil by short path distillation. The selection of papers in this Special Issue collectively highlights a range of forward looking and also new and including positive scientific outcomes occurring in the omega-3 field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photocatalytic oxidation (PCO) process is an effective way to deal with organic pollutants in wastewater which could be difficult to be degraded by conventional biological treatment methods. Normally the TiO2 powder in nanometre size range was directly used as photocatalyst for dye degradation in wastewater. However the titanium dioxide powder was arduous to be recovered from the solution after treatment. In this application, a new form of TiO2 (i.e. pillar pellets ranging from 2.5 to 5.3 mm long and with a diameter of 3.7 mm) was used and investigated for photocatalytic degradation of textile dye effluent. A test system was built with a flat plate reactor (FPR) and UV light source (blacklight and solar simulator as light source respectively) for investigating the effectiveness of the new form of TiO2. It was found that the photocatalytic process under this configuration could efficiently remove colours from textile dyeing effluent. Comparing with the TiO2 powder, the pellet was very easy to recovered from the treated solution and can be reused in multiple times without the significant change on the photocatalytic property. The results also showed that to achieve the same photocatalytic performance, the FPR area by pellets was about 91% smaller than required by TiO2 powder. At least TiO2 pellet could be used as an alternative form of photocatalyst in applications for textile effluent treatment process, also other wastewater treatment processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Compared to the Conventional Activated Sludge Process (ASP), Membrane Bioreactors (MBRs) have proven their superior performance in wastewater treatment and reuse during the past two decades. Further, MBRs have wide array of applications such as the removal of nutrients, toxic and persistent organic pollutants (POPs), which are impossible or difficult to remove using ASP. However, fouling of membrane is one of the main drawbacks to the widespread application of MBR technology and Extra-cellular Polymeric Substances (EPS) secreted by microbes are considered as one of the major foulants, which will reduce the flux (L/m2/h) through the membrane. Critical flux is defined as the flux above which membrane cake or gel layer formation due to deposition of EPS and other colloids on the membrane surface occurs. Thus, one of the operating strategies to control the fouling of MBRs is to operate those systems below the critical flux (at Sub-Critical flux). This paper discusses the critical flux results, which were obtained from short-term common flux step method, for a lab-scale MBR system treating Ametryn. This study compares the critical flux values that were obtained by operating the MBR system (consisting of a submerged Hollow-Fibre membrane with pore size of 0.4μm and effective area of 0.2m2) at different operating conditions and mixed liquor properties. This study revealed that the critical flux values found after the introduction of Ametryn were significantly lower than those of obtained before adding Ametryn to the synthetic wastewater. It was also revealed that the production of carbohydrates (in SMP) is greater than proteins, subsequent to the introduction of Ametryn and this may have influenced the membrane to foul more. It was also observed that a significant removal (40-60%) of Ametryn from this MBR during the critical flux determination experiments with 40 minutes flux-step duration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of polycyclic aromatic hydrocarbon and highly effective degradation fungi Mucor mucedo (MU) was studied on corncob decomposition in Pyr-contaminated soil for 120 days to identify the impact of a degradable immobilized carrier on the remediation of soil contaminated by persistent organic pollutants. Results showed that the corncob was mainly composed of hemicelluloses, cellulose, and water dissolved (WD) material, which accounted for 85 percent of its total weight. MU addition significantly affected corncob decomposition. Thus, humic acid production and WD and benzene-ethanol dissolved material degradation increased. The peaking of the WD content was delayed for 30 days or more. The extractable pyrene content positively correlated with the WD content in the corncob during the decomposition. These results theoretically support a refined remediation principle of immobilized microorganisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emerging field of blue carbon science is seeking cost-effective ways to estimate the organic carbon content of soils that are bound by coastal vegetated ecosystems. Organic carbon (Corg) content in terrestrial soils and marine sediments has been correlated with mud content (i.e. silt and clay), however, empirical tests of this theory are lacking for coastal vegetated ecosystems. Here, we compiled data (n = 1345) on the relationship between Corg and mud (i.e. silt and clay, particle sizes <63 μm) contents in seagrass ecosystems (79 cores) and adjacent bare sediments (21 cores) to address whether mud can be used to predict soil Corg content. We also combined these data with the δ13C signatures of the soil Corg to understand the sources of Corg stores. The results showed that mud is positively correlated with soil Corg content only when the contribution of seagrass-derived Corg to the sedimentary Corg pool is relatively low, such as in small and fast growing meadows of the genera Zostera, Halodule and Halophila, and in bare sediments adjacent to seagrass ecosystems. In large and long-living seagrass meadows of the genera Posidonia and Amphibolis there was a lack of, or poor relationship between mud and soil Corg content, related to a higher contribution of seagrass-derived Corg to the sedimentary Corg pool in these meadows. The relative high soil Corg contents with relatively low mud contents (i.e. mud-Corg saturation) together with significant allochthonous inputs of terrestrial organic matter could overall disrupt the correlation expected between soil Corg and mud contents. This study shows that mud (i.e. silt and clay content) is not a universal proxy for blue carbon content in seagrass ecosystems, and therefore should not be applied generally across all seagrass habitats. Mud content can only be used as a proxy to estimate soil Corg content for scaling up purposes when opportunistic and/or low biomass seagrass species (i.e. Zostera, Halodule and Halophila) are present (explaining 34 to 91% of variability), and in bare sediments (explaining 78% of the variability).